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Statistical Thermodynamics

* Thermodynamics
* Study of the relationships between macroscopic properties
* Volume, pressure, compressibility, ...
 Statistical Mechanics (Statistical Thermodynamics)
* how the various macroscopic properties arise as a consequence of the microscopic nature of the system
* Position and momenta of individual molecules (mechanical variables)

 Statistical Thermodynamics (or Statistical Mechanics) is a link between microscopic properties and
bulk (macroscopic) properties
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Introduction

1 A thermodynamic system is a macrosystem consisting of a large number of molecules.

[ It establishing the various thermodynamic function, the structural model of the system is no where required.
Without knowing the system is composed of atoms or molecules.

O Statistical thermodynamics develop the thermodynamic properties by expressing the statistical distribution of
the molecular properties.

O In statistical mechanics the energy of the system we can express without knowing the motion of individual
molecules, only with the number ways the molecules distributed over the available quantum mechanical energy
states.

O The various distribution are known as the microstate of the system.

O The object: to interpret the equilibrium thermal properties of macroscopic systems (equal temperature,
pressure, and chemical potential)

O The basic postulate of statistical thermodynamics is that: In a state of thermal equilibrium all the
accessible/possible microstates of an isolated assembly are equally probable.



% Ensemble: denote a number N of identical entities, such as molecules, atoms, electrons.

»* Macrostate: is specified by the number of particles in each of the energy levels of the system.
» Microstate: is specified by the number of particles in each energy state.
** Degeneracy: an energy level contains more than one energy state.

» Thermodynamic probability: the number of microstates leading to a given macrostate. It is donated by
W, where k represents the ki macrostate.

Macrostates : T, P, V, ... (fewer variables)
Microstates : position, momentum of each particles (~10?3 variables)

The thermodynamic state also known as the macrostate of a system can be described/fixed by macroscopic parameters like
P,T,V&Nn,
In contrast, the quantum state of the system (or the microstate) requires a large a large number of variables to describe.



An ensemble consists of an infinite (or: very large) number of copies of a particular systems.

surroundings

ensemble of systems

O In thermodynamics, the world is always divided into a system and its surroundings.
U The behavior of the system depends on how the system can interact with its surroundings:

O Statistical thermodynamics introduce the concept of an ensemble of systems.



Classification of ensembles

The system in an ensemble are typically not all in the same microstate or macrostate, but all of them

interact in the same way with their surroundings. Therefore, ensembles can be classified by the way their
systems interacts with their surroundings.

e An isolated system can neither exchange particles nor energy with its surroundings. The energy F, the
volume and the number of particles NV are constant in these systems — microcanonical ensemble.

e A closed system cannot exchange particles with its surroundings, but it can exchange energy (in form
of heat or work). If the energy exchange occurs via heat but not work, the following parameters are
constant: temperature T, volume V' and the number of particles N — canonical ensemble

e In a closed system which exchanges energy with its surrounding via heat and work the following

parameters are constant: temperature 7', volume p and the number of particles N — isothermal-
isobaric ensemble

e An open system exchanges particles and heat with its surroundings. The following parameters are
constant temperature T', volume V' and chemical potential ;©+ — grand canonical ensemble



Ensembles

* Micro-canonical ensemble: E,V,N

e Canonical ensemble: TV N

* Constant pressure ensemble: TN
* Grand-canonical ensemble: TV, u



Assembly of distinguishable particles

* An isolated system consists of N distinguishable particles.
* The macrostate of the system is defined by (N, V, U).

* Particles interact sufficiently, despite very weakly, so that the system
is in thermal equilibrium.



Maxwell-Boltzmann statistics (classical statistic):
» Deal with the distribution of distinguishable particles amongst
different energy level (Ex: Ideal gas).

» Do not account about the internal structure are of the molecule.

» No restriction of the concupiscence of the energy level.

Bose-Einstein Statistic (quantum statistic):

» Indistinguishable particle (Boson: which have integral spin,
Ex: Photon, *He, deuterium

» Do take into account about the internal structure of the
molecules.

» Here also no restriction on the occupancy of the energy
level

Fermi-Dirac Statistic:
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» Indistinguishable particle (Fermions: which have half integral spin, Ex: electron}

> Do take into account about the internal structure of the molecules.

» Here is a restriction on the occupancy of the energy level
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* Two restrictive conditions apply here
Z N. =N (conservation of particles)

z N,E, =U (conservation of energy)

where N, is the number of particles on the energy level j
with the energy E..



Concept about “Probability”
In statistics, probabilities are multiplicative.

As an example, consider a true die: The probability of throwing a one is 1/6.
Now if there are two dies, the probability of one coming up on both dies is: (E)(E) — (i
36

Elementary Statistics

We begin by considering 3 distinguishable coins (N D Q)
The possible macrostates are HHH HHT HTT TTT
Let us consider the microstates for the macrostate HHT

} The table shows the possible selection of coins.
There are 6 possibilities.

} However the pairs shown are not different microstates (the order
does not matter).
Hence we have 3 microstates.

OO0 |Z2|O0|Z2|0|x
Z|Z2|0|0|0 O]

Q00|20 |Z2]|T




The number of particles and their total energy must
satisfy

(here the index j starts from 0)

# particleson | # Particleson | # particleson | # particles on
Level 0 Level 1 E Level 2E Level 3E

Case 1

Case 2 1 1 1 0

Case 3 0 3 0 0



So far, there are only THREE macrostates satisfying the
conditions provided.

Configurations for case 1

Level 1E Level 2E Level 3E
A B C

A C B

B, C A

Thermodynamic probability for case 1 is 3



Configurations for case 2

Level 1E Level 2E Level 3E

O W™ W > >
™ > O > O W
> @ > O @ O

C
Configuration for case 3

Level 1E Level 2E Level 3E

A, Band C

Therefore, W, =3, W, =6,and W;=1



Principles of Equal a Priori Probability

» All distributions of energy are equally probable
e fE=5and N =5 then
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All configurations have equal probability, but
possible number of way (weight) is different.
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A Dominating Configuration

* For large number of molecules and large number of energy
levels, there is a dominating configuration.

* The weight of the dominating configuration is much more
larger than the other configurations.

Configurations

{ni}



Dominating Configuration

5 5 5
4 4 4
3 ® 3 3
2 @ 2 2
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0 [ 1 1@ 0 0000 ,
W=1(5!/51) W =20 (51/3) W =5 (51/41)

v

Difference in W becomes larger when N is increased !

v

In molecular systems (N~1023) considering the
most dominant configuration is enough for average



How to find most dominant
configuration ?

e The Boltzmann Distribution

* Task : Find the dominant configuration for given N and total
energy E

e Method : Find maximum value of W which satisfies,

N=>n > dn, =0
E=) &n . &dn =0



http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Boltzmann.html

Method of Undetermined Multipliers

* Maximum weight , W
—>Recall the method to find min, max of a function...

dinW =0

(mnW]: 0
dn,

* Method of undetermined multiplier :

* Constraints should be multiplied by a constant and added to
the main variation equation.




Stirling's approximation

* A useful formula when dealing with factorials of large
numbers.

INNI=NInN—-N

N!
INW =1In =InNI-) Inn!
n!n,In,! Z |

=NInN-=N - annn +Zn

=NInN-> nInn




A Typical Example
of Distribution

Analysis of

Let five distinguishable particles be distributed over the five energy levels with
energies 0, & 2¢& 3£ and 4¢, respectively. Let the total energy of the system in any
one distribution be 4£ Assuming equal accessibility of all energy levels to all
particles, the possible microstates are shown in Table which also includes

the number of ways of achieving the microstates and the corresponding
mathematical probabilities of their occurrence in the system.

The following comments regarding the microstates of a system may be made.
® The number of microstates in a distribution is given by

N!
I, N,

where N is the total number of particles and N;s are the number of particles in
various energy levels.

W

Reference: K.L Kapoor



Number of Ways of Distributing Five Distinguishable Particles

Distribution Number of Particles
in the Energy Levels
0 £ 2¢ 3¢ 4¢

Number
of Microstates

Procedure of Distribution

Mathematical
Probability

of Occurrence

I 4 0 0 0 1

v 1 4 0 0 0

Any one of the 5 molecules can be 5
placed in the 4£level

5 ways of placing Ist molecule
4 ways of placing 2nd molecule

5 ways of placing 1st molecule
4 ways of placing 2nd molecule 2

Since the molecules are placed

in the same energy level, the
distribution containing the same

molecules is counted twice, hence
division by two.

5 ways of placing 1st molecule Sx4x3

4 ways of placing 2nd molecule a2 =

3 ways of placing 3rd molecule

In the energy level & each
distribution is counted twice,
hence divison by two.

5 ways of placing 1st molecule
4 ways of placing 2nd molecule 4x3x2
3 ways of placing 3rd molecule =5
2 ways of placing 4th molecule

In the energy level g each distri-
bution is counted 4 x 3 x 2 ways,
hence division by 4!

Sx4x3x2

3 _007
70

20 _ 0286
20

10 _o.143
70

— =0.429

3 _o00m
70

Total Number of Distributions 70

Reference: K.L Kapoor



® The total number of microstates in all distributions may be computed by using
the expression

_(N+E-])!
(N = DE!
where E is the number of quanta of energy in the maximum energy level.

® The mathematical probability of occurrence of a distribution is given by

o W W
wlolll 25 Wc
® The most probable distribution corresponds to the maximum probability of
occurrence.

Reference: K.L Kapoor



® With the increase in the number of particles, the probability of the most probable
distribution increases towards the maximum value of unity (e.g. for N = 10,
P=0503;N=20,P=0.547,N=50, P=0.786 and N = 100, P = 0.887). In a real
system where very large number of particles (e.g. 107) is involved, the probability
of the most probable distribution will be almost equal to one.

® The macroscopic properties of a system depend upon the various microscopic
states of the system. The fact that the probability of the most probable
distribution is nearly unity, the macroscopic properties of a system at equilibrium
is largely governed by the most probable distribution.

® In a real system, energy levels may involve degeneracy (i.e. more than one energy
state is involved in an energy level). In such a case, the number of ways of
distributing the particles is enhanced. For example, the number of ways of
distributing two distinguishable particles is increased from one in a nondegenerate
energy level to four in a doubly degenerate energy levels, as shown in the

following.
o aen ® oy il Ay —O
O e el
Nondegenerate Doubly degencrate cnergy levels
energy level

Reference: K.L Kapoor



The general expression for computing the number of microstates for distinguishable
particles occupying degenerate energy levels with no restriction on the number of
particles in any energy level is given by

8"
w-_-(N!)[rl,. ﬁ)

where g; is the degeneracy of ith energy level.
® The quantity W is frequently called the thermodynamic probability,

For indistinguishable particles, W = IT,(g/"//N; !)

Reference: K.L Kapoor



1. The total number of particles in a system has a constant value, i.e.

N = 3., N; = constant 4.2.5)
or equivalently,
dN =3 ,dN;=0 (426)
2. The total energy of the system has a constant value, i.e.
U = 3, N,&;= constant 427

Comment All energies & are measured with respect to the lowest available energy
at T = 0 K. For translational and rotational motions, £,= 0,but for vibrational motion,
& = (1/2)hv,. Correctly speaking, the internal energy of a system is given by

U’ =Up+ X, Nig;
Throughout this chapter, we represent U’ — U, as U.
The condition of constant U implies that
dU = X, €dN;=0 (4.2.8)

The expression of In W is

N
_ &'
InW =In [(M ![n, N !]]

Reference: K.L Kapoor



For a large value of x, one can simplify In x! by using Stirling approximation
Inx!=xlnx-x

Hence, ImW=(NIhN-N)+ 3 [N;Ing ~(N;,InN,-N)]

The condition of maximizing In Wis

dan=Z(a;;:v]dN 0 429)
o e 43
o
Since ;’; = a);;vjv =1, e
%‘%ﬂmﬂnﬁ'h‘”“-m(%)

Reference: K.L Kapoor



With this, Eq. (4.2.9) becomes

2;-In (-j-v-‘—] dN;=0 4.2.10)
Ng;

The constancy of number of particles (Eq. 4.2.6) and energy of the system
(Eq. 4.2.8) are introduced in Eq. (4.2.10) by the method of Lagrange multipliers. In
this method, Eqs (4.2.6) and (4.2.8) are multiplied by undetermined multipliers and
added in Eq. (4.2.10). Hence, we can write

) [— ‘n(:—;] o b ﬂei]dN, =0 42.11)

where @ and - f are the undetermined multipliers. For the sum to be equal tc zero,
each coefficient of dN, is set equal to zero. Hence, we write

—ln( -/ )4- a-p&=0 42.12)
N g;
or N, = Ng,e% P 42.13)

Equation (4.2.13) is known as Boltzmann distribution law. This specifies the most
‘probable distribution of particles among the energy levels.

Identification of The constant @ may be eliminated by using the relation
the Constant o N=3.N,

Substituting N, from Eq. (4.2.13), we get
N=Y,. Nge% P Reference: K.L Kapoor



a_ 1
’ 2.8
With this, Eq. (4.2.13) becomes
N,=N 5.° N g, e P¢ 42.14)
2.&e™ g
where g, known as molecular partition function, is given by
g= 3, g 4.2.15)

The degeneracy of the energy levels is taken care of by the term g,. However, if we
take summation over quantum states, Eq. (4.2.15) may be written as

9= 2, e
(states)

It is for this reason, the molecular partition function is sometimes referred to as a
‘sum over states’.

Reference: K.L Kapoor



+4oo

-
_[ 02 exp(-Bmv?/2) dv, J’ v? exp(-Bmv2/2) dv,

ie. U=-;—mN . e

I exp(-Amv?12) dv, J' exp(~Bmv?/2) dv,

—on —0

j v} exp(—fmv’/2)dv,

4o

jexp(-ﬂmvflz)dv,

+

-0

Since v,, v, and v, are independent, and each of the three terms has the same form,

we can write
400

j’ v? exp(~fmv?/2) dv

3
e _;_mN ~ _ % o [(1/2)\/81:/,6% ]

2/
J' exp(~Amv?12) dv w/fm

—co

_3N
2p
The expression of average kinetic energy becomes
- U 3
U=z— = — 4221
N~ 25 ( )

Reference: K.L Kapoor



From the kinetic theory of gases, we have

U= kT
2
3 3
H , =—=— kT
ence 25" 2
This gives
1
f=_" 4222)
kT

Although, the above expression has been derived for a monatomic gas, it is valid
for all types of system.

Reference: K.L Kapoor



Comment on the The expression of molecular partition function is
Molecular
Partition Function . q= X, 8 exp(~&/kT)
At temperature T close to zero, the value of each of the term exp(- &/kT) will
be close to zero. If & = 0, then leaving the first term, for which exp (- €,/kT) will
have a value of one, the partition function will have a value close to g, i.e.

rapd= b0

At very high temperature, the value of each of the term exp(- &/kT) will be
close to one, and the value of partition function will be close to the number of
available energy states.

Thus, the molecular partition function gives an idea about the average number
of states that are thermally accessible to a particle at the temperature of the system.
At T = 0 K, only the lowest energy state will be accessible while at very high
temperature, a large number of higher energy states are accessible.



Thermodynamic properties in terms of molecular partition function

Internal Energy The expression of internal energy is
U= 2; N; g
From the Boltzmann expression, we have

N; = N 8 ePei (where f= 1/kT)
q

Hence, U = (Zi%gi e"’")s,-
From the fact that

we can write the above expression as
N de e N 3 —fe. N (aq)
U=-— ..g‘.—-— = e —— i [ ‘' e ] —

alnq)
—N @5.1)
( B ),

In terms of T, we have

v--n(*p2) (2)

Since T = 1/kf, we have

ar _ 1 I B Thus U=NkT2(

B~ kP kWKT?

dlng
oT

)




First Law of Thermodynamics

From the first law of thermodynamics, we have

dU = dg’ + dw 453)
where ¢’ and w stand for heat and work, respectively.
Since U= Y . N, &, we also have

dU = 2'- 8' dN, + Z'- N" dé‘, (4.5.4)

The first term of Eq. (4.5.4) expresses the change in internal energy due to the
change in population of particles in the energy levels. This fact may be attributed
to the term dq” of Eq. (4.5.3). Hence, we write

dq'= Zl' 8" dN‘ (4.5-5)

The second term of Eq. (4.5.4) expresses the change in internal energy due to
the change in the magnitude of energy levels. This fact may be attributed to the

term dw of Eq. (4.5.3) as the magnitude of energy level is affected by the change in
the boundary parameters (say, volume) of the system. Hence, we write

dw= Y N, dg (4556)



Pressure

The expression of mechanical work is
dw = - pdV
Using Eq. (4.5.6), this becomes

-pdV= 3, N;dg
Using the Boltzmann expression, we get

-pdV = Ll Y. (8 ePeide); (where = 1/kT) 45.7)
q

The differential change in the molecular partition function g at fixed temperature is
dg= 2, 8 e % (- p) dg
With this, Eq. (4.5.7) becomes
N 1 N

dV=— —dg=—dIn
p qu" ; q

Hence, p= Z (aah"/q) (45.8)
T

Since f= 1/kT, we have

- M) 459
p—NkT( v ) (45.9)



Expression of

By definition,
dS = 4Gy

—————

Using Eq. (4.5.5), this becomes

1
ds= ;2; €; dN;

Since f= 1/kT, we get
dS = Sk 2,- g§dN, =k Z.- (Be) aN;
From the Boltzmann expression

dlnW
+a-pe, =0
aN‘- ﬁ T
dinW
we get fe; = +a

aN,

(4.5.10)

(4.5.11)

4.5.12)

(Eq.4.2.12)



With this, Eq. (4.5.12) becomes

dS=k 2‘(871?\/!) dN, + ka ¥, dN, 45.13)
But ) .dN,;=0. Hence
dln W
p—d k o s -
ds z,( w )dN, k@dln W)
or S=klhW 45.14)

Equation (4.5.14) is known as Botlzmann-Planck equation.



Entropy of
Distinguishable
Particles

N
Since W=N'! l'l,g‘—, we get
N;!
mW=lnN!+ 3 Nlng -3 InN;!
Using Stirling approximation, we get

N;
== 2.’ N;In (_')
Ng;
From the Boltzmann expression N; = (N/q) g; exp(- f&;), we get
N _e™
Ng; q9
o In (i) =-fe-Ing
Ng;

With this, Eq. (4.5.15) becomes

InW= 3, N;(f&+Inq) =ﬂ(2.’~i£i) + (Z,.N,-)ln q
=pU+NIng
Hence, the expression of entropy is
S =klnW=kpU+kNIng

U
=—+kNIn
T q9
Substituting the expression of U from Eq. (4.5.2), we get

alnq)
S =NkT | — Nk In
(ar . 1

. ding
= Nk[T(—aT )v + In q]

(45.15)

45.16)

(4.5.17a)

(4.5.18a)



Entropy of For indistinguishable particles
Indistinguishable g
Particles W=TI, 8

N;!

Hence‘ lnw=2‘(N‘lng"-lnN1!)
Using Stirling approximation, we get
an: z‘ (N‘lngi-N"lnN"f N,’)
g.
=).NIn=4+N
2[ I N

)

From Boltzmann expression N, = (N/q) g, exp(-JE¢,), we get

& = i ep‘I
NN

or ln(%’:):ln(%)+ﬂe,-

Hence, InW= 3, N, [lu(%) + ﬁfi] +N

The expression of entropy is
S=klnW

=k[~1n(%)+,80+~]

The expression of entropy is
S=klnW

=k[Nln(%)+ﬂU+N]

o [o()e (5, o]



Heat Capacities

Since H=U + pV, the expression of H is

H = NkT? (a;‘}") + pV
v

Since Cy=(dU/dT)y, the expression of Cy is

d 2(alnq) d 2(alnq)
NKT = T
Cv= [ar oT V]V Nk[ar oT

Since C,= (0H/ dT),, the expression of C,is

o[ ), )
P
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